

Pacific Northwest National Laboratory

Operated by Battelle for the U.S. Department of Energy

Using Basic Surface Radiation and Met Measurements to infer Cloud Properties

C. N. Long, J. C. Barnard,

J. Calbo, T. P. Ackerman

K. Gaustad, and others...

Introduction

- We have some sophisticated surface cloud and radiation sites
 - Retrieval of cloud properties, especially microphysical
 - Used for developing, improving, & testing models & satellite retrievals
 - Costly, thus only a few
- Many surface radiative energy budget and meteorological sites
 - Have made progress toward more accurate measurements (BSRN) through deployment of SW direct and diffuse measurement capability

Intent of research

- Idea: glean all possible cloud info of reasonable and useful certainty from typical surface rad. & met. meas.
- For use:
 - -in climatological studies
 - as ground truth for model/satellite comparisons

Flux Analysis

- SW Flux Analysis (SWFA) code
 - Detection of clear (i.e. cloudless) sky periods using Long and Ackerman (2000)
 - Empirically fit functions, interpolate for cloudy periods
 - Produce continuous estimates of clear-sky downwelling global, direct, and diffuse SW
 - Infer fractional sky cover for solar elevations of 10^o and greater
 - Currently available as an ARM VAP

Cloud Optical Depth

- Effective plane-parallel spherical droplet cloud optical depth
 - Based on Min and Harrison, 1996, GRL.
 - Barnard and Long, 2004, JAM, empirical formulation
 - (incl. sfc. albedo and asymmetry parameter)
 - Known to overestimate for small optical depths
 - Use independent pixel approximation arguments for partly cloudy skies
- Needs refinement for water/ice

Clear-Sky Downwelling LW

- Effective clear (cloudless) sky downwelling LW
 - Related work by Marty and Philopona (2000), Duerr and Philipona (2004), Sutter at al. (2004)
 - Based on formulation proposed by Brutsaert (1975) using surface measurements of <u>air temperature and</u> <u>humidity</u>

Clear-Sky LW

- Our approach:
 - Use SWFA detected clear-sky periods
 - Additionally detect "LW effective clear-sky" periods
 - Variability of LW time series (after Marty and Philipona, 2000, GRL)
 - Use T_a T_e difference
 - If 21-minute running standard deviation < 0.7 Wm⁻² and (T_a-T_e) > 12 K, then data are labeled "LW clear-sky"
 - Use clear-sky measurements to calculate Brutsaert lapse rate coefficients
 - Interpolate coefficients for cloudy periods similar to SWFA (but must include sub-24-hour approach)

Estimated Clear-Sky LW

LW downwelling cloud effect and sky cover

- Comparison of a continuous estimate of downwelling clear-sky LW to the LW measurements yields the cloud effect
- Durr and Philipona (2004, JGR)
 - Related the variability of LW measurements
 - And ratio of the "effective LW emissivity" from measured LW (_m) over the "effective clear-sky LW emissivity" (_c)
 - To observer reports of low and mid-level cloud amounts.

LW effective sky cover

- Durr and Philipona (2004, JGR) use previous variability to "nowcast".
 - Thus climatological clear LW estimates
 - Use "tuned" threshold limits and variability to classify LW effective sky cover, estimated in oktas
- We use a running 21-minute standard deviation centered on the time of interest instead.
- Some "tuning" is needed to refine our methodology
 - ARM has just deployed an IR Sky Imager we can use as comparison data for this refinement

LW Scv: Alternate technique

- Han and Ellingson (1999) and Takara and Ellingson (2003) developed a technique to infer LW effective sky cover
- Uses spectral interferometer (AERI)
 measurements in the 8 12 micron infrared
 window
- Estimate both the clear-sky and overcast sky flux values
- Then use independent pixel approximation arguments and the measurements to estimate LW effective sky cover

Alternate technique (IRT)

- Flux Analysis provides the needed clear-sky and measured LW
- Use IRT measurements to infer cloudy sky radiating brightness temperature
- Use the Flux Analysis effective clearsky LW emissivity and IRT to estimate the overcast LW influence on the LW measurement
- SCV_{LW} = (LW LW_{clr})/(LW_{ovc} LW_{clr})

Estimated Sky Cover

ARM SGP CIC IOP 20030325

—LWScv —SWScv —T&ESCV ▲ A_CBH

Cloud Temperature and Height

- If we have an IRT, we can infer cloud effective radiating temperature
- Alternatively, we can use independent pixel approximation arguments, the LW effective cloud amount, and the clear-sky and measured LW
 - $T_{cld} = {(LW-LW_{clr})/([1-_c]*SCV_{LW}*_)}^{1/4}$
 - Assumes single plane-parallel layer
- Use T_a T_{cld} difference, 10K/km lapse rate
- Results for low and middle clouds only

Cloud Temperature and Height

20030325 Raman Lidar

Clear-sky Upwelling SW

- Upwelling SW
 - Clear-sky fitting and interpolation
 - Misses surface changes occurring during cloudy periods [SNOW!]
 - Measured albedo times clear-sky SWdn
 - Albedo changes depending on whether direct component is blocked or not
 - Use climatological behavior of solar zenith angle dependence of "direct" albedo with running analysis of "diffuse" albedo

Surface Albedo Dependence

SGP CF 1998-2000 Surface Albedo

Clear-sky Upwelling LW

- Upwelling LW
 - Product of total surface energy exchange
 - Including latent and sensible heat
 - Multivariate fitting and interpolation
 - Using LWdn, SWnet, RH, Wspd
 - Primary driver is <u>LWdn</u>
 - LWdn related to LWup because emissivity = absorptivity
 - Some <u>SWnet</u> for vegetated surface converted to plant energy, not heat; not so for bare soil or snow
 - RH & Wspd surrogates for latent and sensible exchange
 - Difficult to verify for cloudy periods

LWup Example

Estimated Clear-Sky LWup

Example Analyses

- The following are offered in the spirit of examples using the techniques described
 - Upwelling results are "work in progress"
- For these analyses, the clear-sky SWup was determined simply by taking the measured albedo times the clear-sky SWdn

SGP Monthly Averages

SGP Monthly Averages, Downwelling Cloud Effect

Avg LWdCE: 23.5

Avg SWdCE: -58.8

Avg NetDnCE: -35.3

SGP Monthly Averages, Upwelling Cloud Effect Avg LWuCE: -3.4

Avg SWuCE: -11.1

Avg NetUpCE: -14.4

SGP Monthly Averages, Net Cloud Effect & Forcing Avg NetDn CE: -35.0

Avg NetUpCE: -14.4

Avg NetCF: -20.6

SGP Daily Avgs: Flux

Manus Monthly Averages

Manus Monthly Averages, Downwelling Cloud Effect

Avg LWCE: 19.0

Avg SWCE: -90.0

Avg NetCE: -71.0

Manus Daily Avgs: Flux

Nauru Monthly Averages

Nauru Monthly Averages, Downwelling Cloud Effect Avg LWCE: 16.2

Avg SWCE: -63.8

Avg NetCE: -47.6

Nauru – 2000 La Nina phase (suppressed)

Nauru – 2002 El Nino phase (convective)

Sky Cover Frequency

Kwajelin Sky Cover

Sky Cover

BAR Monthly Averages

BAR Monthly Averages,

Avg LWdCE: 35.3

Downwelling Cloud Effect Avg SWdCE: -46.9

BAR Monthly Averages, Upwelling Cloud Effect Avg LWuCE: -5.1

Avg SWuCE: -18.6

BAR Monthly Averages, Net Cloud Effect & Forcing Avg NetDn CE: -12.5

Avg NetUpCE: -24.1

BAR Daily Avgs: Flux

Summary

- We can now infer useful cloud information using surface radiation and meteorological measurements
 - Clear-sky SW and LW, for cloud effect/forcing
 - SW and LW fractional sky cover
 - Cloud visible optical depths
 - Cloud field effective radiating temperature
 - Cloud field effective height
- This methodology uses no ancillary data (sondes, radar, RUC, etc.),
- Thus non-incestuous comparisons

Summary

- It is recommended that "basic" surface sites include:
 - Broadband up and down SW and LW irradiances
 - SW component (direct and diffuse)
 - Surface meteorology (T, RH, Prs, Wspd, Wdir)
 - NFOV IRT measurements

Collaborations

- I am seeking collaborations for analyses of BSRN-style surface radiation and met measurements
 - Centre for Broadband Cloud Retrievals
- For more information and correspondence:
- Chuck.Long@arm.gov

"Cloudless" example

Average surface albedo this day is about 25%

Sutter M., B. Dürr, R. Philipona (2004), Comparison of two radiation algorithms for surface-based cloud-free sky detection, J. Geophys. Res., 109, D17202, doi:10.1029/2004JD004582.

